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I. Phys. A Math. Gen. 28 (1995) 3563-3564. Printed in the UK 

ADDENDUM 

Comment on singular solutions to the stationary 
coagulation equation 
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t Obninsk Instilute of Atomic Energetics, Studgorodok 1, Obninsk 249020, Russia 
$ Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond 
Sweet, Glasgow G1 IXH, UK 

Received 4 April 1995 

Abstract. We cO"ent on ow paper 'Exact solutions for the coagulation-fmgmentation 
equation'. 

We examine the stationary Smoluchowski coagulation equation 

[ K(m -ml ,  ml)c(m - m1)c(ml)dml - c(m) 1- K(m,  ml)c(ml)dml = 0 (1) 

with a symmetric non-negative coagulation kemel K(m,ml) = K(ml,m), m,ml > 0. A 
previous paper by the authors [l] demonstrated the surprising phenomenon of existence of 
stationary solutions to (1). A typical solution with this behaviour satisfies the equality 

The bounded continuous coagulation kernel 

yields the stationary solution 
O - = m < l  
m > l .  

c(m) = [ 7 - 3  (4) 

This mathematical phenomenon is really surprising and an attempt should be made to discuss 
this result from a physical point of view. 

By considering the Smoluchowski model in the form 

m 

(5) 
Lm a 

a t  

a 
at  

- ~ ( m , t )  = -  K ( m - m l , m l ) ~ ( m - m l , t ) ~ ( m l , t ) d m i  

-c(m.Ol K(m,ml)c(ml,t)dml m > O  

Jdm (6) -c(O, t )  = -c(O, t )  

an attempt has been made in [Z] to explain the occurrence of the above stationary solution. 
A similar approach connected with replacing Smoluchowski's model by another model was 
considered when it was discovered that the coagulation kernel K(m, ml)  = mml yields the 
paradoxical infringement of the mass conservation law after a critical time (see [3,4] and 
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K(0,  ml)c(ml. t )  dml m = 0 
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references in [l]). There were suggestions to change the Smoluchowski equation to ensure 
the conservation of mass by replacing the second term in (1) with 
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m c h  0 l m m l c ( m l ,  0) dml 

(see e.g. discussion in [3]). However, further research reported in the literature demonstrated 
the correctness of the original coagulation model [3,4]. Thii adapted coagulation model 
did not replace the original Smoluchowski equation. We anticipate that the model (5) and 
(6) is destined for a similar fate: the reason being that in 121 it is assumed that the value of 
the function 

f ( m )  = G(m, mddml (7) 

at the point m = 0 is equal to zero independently of the integrand C(m, mi) .  However, an 
elementary computation can show that, for instance, the value of the function 

(8) 

at the point m = 0 is equal to In2 despite the integrand being singular at zero. Following 
the argument presented in [2] it would have to be equal to zero which, as demonstrated by 
(S), cannot be me in general. A similar problem arises in the well known solution to the 
heat equation 

f ( m )  = [ 1 dml m f m l  

at the initial time t = 0: direct substitution of t = 0 into (9) is impossible and hence we 
must pass to the limit t + 0 in order to define u(x, 0) from (9). 

The simple examples (8) and (9) show that the particular approach in [2] is 
fundamentally different from that in 111. In [l] we study the Smoluchowski equation from 
the mathematical point of view, the value at zero being considered as the limit as m -+ 0, 
all the results being mathematically rigorous. 

The above discussion demonstrates that the model (5) and (6) leads us away from a 
physical explanation of the mathematical phenomenon discovered in [I]. As an attempt 
to explain the phenomenon let us consider the bounded coagulation kernel (3) with the 
stationary solution (4). We can see that this stationary state is achieved due to a constant 
influx of small particles. The number of small particles is infinite and, moreover, is large 
enough to ensure the influx of small particles for all t > 0. The phenomenon of existence 
of stationary solutions of the pure coagulation equation, therefore, takes place due to the 
influence of a sufficiently large ‘infinity’ of small particles. In conclusion, we would like 
to add that the above mentioned phenomenon of the infringement of the mass conservation 
law for K(m,  m l )  = mml is due to a different type of influence at infinity. 
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